MFE600 Intelligent Electromagnetic Flowmeter

Introduction

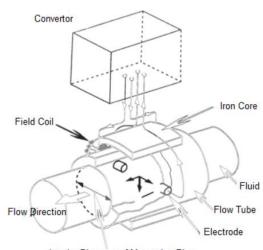
MFE600 Intelligent Electromagnetic Flowmeter is designed and manufactured with the most advanced domestic and abroad technology, featuring high accuracy, reliability, good stability and long service life.

We pay our attention to every detail in the process of the product structure design, material selection, manufacturing, assembly and factory testing etc. With a water tower up to 35m as pressure stabilizer for actual flow calibration, we have a professional production line for electromagnetic flowmeter, also we design and develop a series of software and hardware for electromagnetic flowmeter for mass production to ensure high quality in long term use. The product has backlight and wide temperature-ranged Chinese LCD display. With fully practical function, visual display, easy operation, it saves troubles for on-site installation operation and

maintenance. MFE600 can be widely used in industrial fields such as petroleum, chemical, metallurgy, water supply and drainage, steel, coal, paper, food, textile, environmental protection and other municipal administration, water conservancy construction field etc.

Working Principle

The working principle of Electromagnetic Flowmeter is based on Faraday's Law of Electromagnetic Induction, that is, when the conductive liquid flows through the electromagnetic flowmeter, the induced electromotive force will be produced in the liquid conductor, and the induced electromotive force is directly proportional to the velocity of conductive liquid, magnetic flux density and width of conductor (interior diameter of flowmeter).


Such induced electromotive force is detected by a pair of electrodes on the tube wall of the flowmeter, and the rate of flow can be acquired by mathematical operation. The equation of induced electromotive force is as follows:

 $E = K \times B \times V \times D$

E: Induced electromotive force

K: Instrument Constant B: Magnetic flux density D: Interior diameter of measuring pipe

V: Velocity

Interior Diameter of Measuring Pipe

The following conditions should be satisfied in order to obtain satisfactory measuring accuracy:

1. The measured liquid shall posses the electrical conductivity;

2. The pipe shall be full of liquid;

3. The components of liquid shall be well mixed;

4. If the liquid has magnetic permeability, the magnetic field of the flowmeter will change, so the flowmeter shall be modified.

During measurement, when the fluid flows through the magnetic field perpendicularly to the flow direction, the flow of the conductive liquid induces an electric potential proportional to the average velocity, thus requiring the conductivity of the flowing liquid measured is higher than the minimum conductivity. The induced voltage signal is detected by the two electrodes. And it is transmitted through the cable to the converter, after signal processing and related operations, integrated flux and instantaneous flux will be displayed on the display screen of the converter.

Features

1. The electromagnetic flowmeter is an instrument for volume flux measurement. The flux measurement will not be influenced by the fluid density, viscosity, temperature, pressure and electrical conductivity changes. There is a linear relationship between the inducing voltage signal of sensor and the average velocity. Its accuracy is high.

2. Due to the unimpeded flow and no moving parts, it will not cause additional energy loss or jam. Therefore it is remarkable for energy saving, especially it is suitable for measurement of liquid-solid two-phase fluids such as sewage, slurry, pulp, coal slurry, pulp etc.

3. The electromagnetic flowmeter has no mechanical inertia. With good sensitivity, it can measure the transient pulsating flux, and has good linearity.

4. It has low requirements for installation. Short straight pipe is needed, generally 5D in front of the flowmeter, 3D behind it (D is the interior diameter of the selected instrument).

5. Only the lining and electrodes contact with the media, as long as the selection of electrode and lining materials is proper, they can be corrosion resistance and abrasive resistance, and are able to ensure long-term use.

6. When power supply is off suddenly, EEPROM can protect parameter setting and cumulative values.

7. The converter uses a low-power consumption single-chip for processing data. And it uses SMD electronic components and SMT surface mounting technology to ensure reliable performance, high accuracy, low power consumption and zero stability. With Chinese dot matrix LCD display, it can display the integrated flux, transient flux, velocity, flow percentage and other parameters.

8.Multi-electrode structure ensures high accuracy. With the grounding electrode, it doesn't need grounding ring, therefore saves the cost.

9. The low-frequency rectangle wave excitation improves the flux stability. It has low power consumption and good low flow characteristics.

10.Bidirectional measurement system can be used for measuring forward flux and reverse flux.

Performance

Electromagnetic Flowmeter Converter Components:

Input signal: signal emitted from the sensor directly proportional to the flow.

Output signal: $4\text{mA} \sim 20\text{mA}$ DC (load resistance $0\Omega \sim 750\Omega$).

Select pulse / alarm output by parameter setup

Pulse output: (pulled up resistor already)

4mA ~ 20mA DC Output: Current output is active output.

Alarm output: rated value 30V DC, 100mA

Communication signal: RS485 communication protocol (optional);

RS232 communication protocol (optional)

Load Resistance: $250\Omega \sim 600\Omega$ (including cable resistance)

Load Capacitance: 0.22µF (Max)

Load inductance: 3.3mH (Max)

Space between split cables: $\leq 100m$

Input impedance of receiving instrument: $\geq 10k\Omega$ (@ 2.4kHz)

Measurement Range setting:

The volumetric flux is set by the setup of volume unit, flux value and diameter of flowmeter.

Volume unit: m³

Velocity unit: m/s

Diameter of flowmeter: mm

Transient flux display: display flux unit, and the percentage of range.

Integrated flux display: display forward and reverse integrated flux and total integrated flux.

Pulse output: By setting an impulse ratio, the pulse quantity expressed in any flux unit can be output.

Pulse width: Duty ratio of 50% or fixed pulse width is available for users to choose.

Output speed: 10 to 400 (PPS) (only applicable when the form of pulse output is selected).

Black-out data protection: data will be stored by EEPROM without backup battery.

Forward and Reverse flux measurement: in the model of forward and reverse flow direction, the reverse flux can be measured.

Upper limit alarm: the transient flux is larger than the upper limit of setting value

ZORICREATO

Lower limit alarm: the transient flux is smaller than the lower limit of setting value

Damping function: available to set from 0.2s ~ 100s (63% response time)

Normal Working Condition

Environment Temperature: -20°C~60°C

Rated Voltage of Power Supply:

220V AC: 100V~240V AC

DC: 24V DC

Installation and Structure

Installation:

Separate model: converter, 50mm pipe or plane installation

Integrated model: combined with the sensor

Wire connector: ISO M20 $\times 1.5$ female thread

Wire Terminals: M3 screw

Housing material: aluminum alloy

Structure:

Protection class: IP65 (general type); IP68 (waterproof)

MFE600 Electromagnetic Flowmeter Performance Introduction(Flange)

Integrated

Separated

Diameter	DN10 ~ DN800
Excitation type	Constant flux square wave excitation
Installation	Integrated flanged, Separated Flanged
Lining	Neoprene, Polyurethane rubber, PTFE, F46
Electrode	316L, Hc, Hb, Titanium, Tantalum, Platinum iridium, Tungsten carbide
Material	
Grounding	Built-in grounding electrode (DN25 and above)
Medium	Conductive liquid
Accuracy Grade	0.2, 0.5, 1.0
Media	$> 5 \ \mu\text{S/cm}$
Conductivity	
Velocity	\leq 15 m/s
Pipe Connection	Flange GB 81~59
Flange	
Pipe Connection	Flange Connection
Media Temp.	Neoprene: -10°C ~ 60°C; PTFE: -10°C ~ 120°C
	Urethane Rubber: -10°C~80°C; F46: -10°C~ 150°C
Rated Pressure	4.0 MPa; 1.6 MPa; 1.0 MPa
Protection Level	IP65; IP68
Output signal	4mA~ 20mA DC current; Pulse/ Frequency, Alarm after Upper and Lower limits
Cable connection	M20×1.5 female
Communication	RS 485 protocol (Modbus protocol)
	RS 232 protocol (optional)
Display	Transient flux, Alarm display, Percentage, Velocity, Forward and Reverse
	Integrated Flux and Total Integrated Flux
Power supply	220V AC, 24V DC, 3.6 V battery power supply
Туре	General, Waterproof
High Voltage	Customized

MFE600 Electromagnetic Flowmeter Performance (Clamp-on)

Diameter	DN10 ~ DN500				
Excitation type	Constant flux square wave excitation				
Installation	Integrated clamp-on, Separated clamp-on				
Lining	Neoprene, Polyurethane rubber, PTFE, F46				
Electrode	316L, Hc, Hb, Titanium, Tantalum, Platinum iridium, Tungsten carbide				
Material					
Grounding	Built-in grounding electrode (DN25 and above)				
Medium	Conductive liquid				
Accuracy Grade	0.2, 0.5, 1.0				
Media	$> 5\mu$ S/cm				
Velocity	\leq 15 m/s				
Pipe Connection	Flange GB 81~59				
Pipe Connection	Flange Connection				
Media Temp.	Neoprene: -10°C~ 60°C; PTFE: -10°C ~ 120°C				
	Urethane Rubber: -10°C~80°C; F46: -10°C~ 150°C				
Rated Pressure	4.0 MPa; 1.6 MPa; 1.0MPa				
Protection Level	IP65; IP68				
Output signal	4mA~ 20mA DC current; Pulse/ Frequency, Alarm after Upper and Lower limits				
Cable connection	M20×1.5 female				
Communication	RS 485 protocol (modbus protocol)				
	RS 232 protocol (optional)				
Display	Transient flux, Alarm display, Percentage, Velocity, Forward and Reverse				
	Integrated Flux and Total Integrated Flux				
Power supply	220V AC, 24V DC, 3.6V battery power supply				
Туре	General, Waterproof				
High Voltage	Customized				

Model Selection

The flowmeter model selection is very important in application of instrument. The related information shows that in practical application of instrument, 2/3 failures are caused by incorrect selection of model and incorrect installation of instrument to which the special attention shall be paid.

- 1. Technological data collection
 - a. The measured fluid name and its chemical substances
 - b. Maximum flux, minimum flux and normal flux
 - c. Maximum working pressure;

d. Maximum temperature, minimum temperature.

2. The measured liquid shall have certain conductivity, electrical conductivity $\geq 5\mu$ S/cm.

3. The maximum flux and the minimum flux shall meet the values in the measurable flux range table.

4. The actual maximum working pressure shall be less than the rated working pressure of flowmeter.

5. The maximum working temperature and the minimum working temperature shall meet the temperature requirements stipulated for flowmeter.

6. Whether negative pressure exists or not in the processing pipeline shall be confirmed.

You can also select the appropriate flowmeter electromagnetic flowmeter according to actual use, and if the interior diameter of the electromagnetic flowmeter selected differs from that of the existing process pipe, then pipe reduction or expansion shall be considered.

1. If the pipeline should be contracted, whether the pressure loss caused by the pipe contraction will affect the process flow or not shall be considered.

2. Considering the measurement accuracy and price, you can choose a smaller diameter electromagnetic flowmeter, which can reduce the investment relatively.

3. When measuring clean water, the economic velocity is $2m/s \sim 3m/s$; when measuring the solution of crystallization, the velocity shall be increased approximately to common velocity of $\ge 2 m/s$, in order to prevent the electrode of electromagnetic from flowmeter being covered.

Measurable Flux Range

Diamatan	Minimum Range	Maximum Range
Diameter	Velocity (0.1m/s)	Velocity (10m/s)
10	0.0283	2.8274
15	0.0636	6.3615
20	0.1131	11.3094
25	0.1767	17.6709
32	0.2895	28.9521
40	0.4524	45.2376
50	0.7068	70.6838
65	1.1946	119.4555
80	1.8095	180.9504
100	2.8274	282.7350
125	4.4177	441.7734
150	6.3615	636.1538
200	11.3094	1130.9400
250	17.6709	1767.0938

International Unit (Diameter: mm, Flow: m³/h)

ZORICREATO

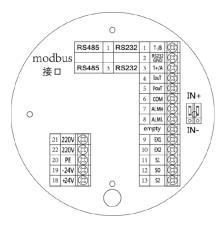
MFE600 Intelligent Electromagnetic Flowmeter (V1.1)

300	25.4462	2544.6150
350	34.6350	3463.5038
400	45.2376	4523.7600
500	70.6838	7068.3750
600	101.7846	10178.4600
700	138.5402	13854.0150
800	180.9504	18095.0400
900	229.0154	22901.5350
1000	282.7350	28273.5000
Diameter	Minimum Range	Maximum Range
Diameter	Velocity (0.3m/s)	Velocity (10m/s)
1100	1026.3281	34210.9350
1200	1221.4152	40713.8400
1400	1662.4818	55416.0600
1500	1908.4613	63615.3750
1600	2171.4048	72380.1600
1800	2748.1842	91606.1400
2000	3392.8200	113094.0000

Electric Connection

Please notice the following suggestions when connecting wires:

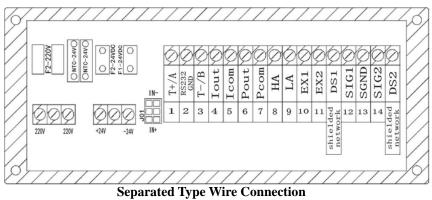
1. In order to ensure interior insulation of sensor junction box, in case of the poor insulation caused by moisture, it is not suggested to connect cable outdoors in the raining weather.


2. When connecting the power cable and signal cable, both ends of the cable should be wrapped with circular lugs.

3. Conduit tube is suggested to use. The conduit tube material can use thick and sturdy steel pipe or flexible metal pipe.

4. All the power cable and non 4-core 24V DC signal cable must be equipped with metal cable protection tube.

5. When equipped with waterproof seal cable connector, it must be tightened to ensure that no water seepage inside the box.


6.In order to protect the operator and maintenance personnel from electric shocks and to prevent the influence of external noise, the ground should be connected to the sign $(\leq 10\Omega)$.

Integrated Type Wire Connection

Te	erminal Symbol	Function
1	T-/B	
2	RS232 GND	RS485 Communication Output RS232 Communication Output (optional)
3	T+/A	K3232 Communication Output (optional)
4	IOUT	4mA~20mA DC current output
5	POUT	2-way flow pulse output/frequency output
6	СОМ	
7	ALMH	Alarm output for Upper Limit of flux
8	ALML	Alarm output for Lower Limit of flux
	Empty(Null)	
9	EX1	
10	EX2	- Excitation Current
11	S1	Electrode wire
12	SO	Grounding wire
13	S2	Electrode wire
20	PE	
21	220V	
22	220V	- 220V AC power supply access point
19	-24V	
18	+24V	- 24V DC power supply access point
Short	IN+	When lugs is connected to (IN +), the flux output is
Circuit lugs	IN-	positive; when lugs is connected to (IN-), the flux output is negative.

MFE600 Intelligent Electromagnetic Flowmeter (V1.1)

T	erminal Symbol	Function					
1	T-/A						
2	RS232 GND	RS485 Communication Output					
3	T+/B	- RS232 Communication Output(optional)					
4	Iout	4mA~20mA DC Current output Active output					
5	Icom	Current output	If it is passive				
6	Pout	2-way flow pulse output/frequency output	output, Please pull out the lug.				
7	Pcom	Pulse output					
8	НА	Alarm output for Upper Limit of flux					
9	LA	Alarm output for Lower Limit of flux					
10	EX1						
11	EX2	Excitation Current					
Shielding Network	DS1						
12	SIG1	Electrode wire					
13	SGND	Grounding wire					
14	SIG2	Electrode wire					
Shielding network	DS2						
	220V						
	220V	 220V AC power supply access point 					
	-24V	24V DC power supply access point					
	+24V						
Short	IN+	When lugs is connected to $(IN +)$, the	-				
Circuit lugs	IN-	positive; when lugs is connected to (IN-), the flux output is negative.					

Name	Specification Code	Instruction			
Instrument Type	MFE600	Electromagnetic Flowmeter			
Measurement Pipe	XXX	For Example: 100 represents DN100			
Diameter					
Electrode Type	1	Standard Mount (required)			
	0	SS316L			
	1	Platinum Pt			
Electrode Material	2	Hastelloy B (HB)			
	3	Tantalum (Ta)			
	4	Titanium (Ti)			
	5	Hastelloy C (HC)			
	3	Neoprene			
Lining Motorial	4	Polyurethane Rubber			
Lining Material	5	F4(PTFE) Polyfluoroethylene F4			
	6	F46(FEP) Polyperfluorethylene-propylene F46			
	4.0	DN 10 ~ 80			
	1.6	DN 100 ~ 150			
Rated Pressure(MPa)	1.0	DN 200 ~ 1000			
	0.6	DN 1100 ~ 2000			
	Е	< 60 °C			
Media Working Temp.	Н	< 120°C			
Ground	1	Built-in Grounding Electrode			
	0	IP65			
Protection	1	IP68			
	0	Integrated			
Converter Type	1	Separated			
Analog Signal	0	4mA~20mA DC (with pulse/frequency)			
	0	No digital signal			
	1	RS-485 (ModBus protocol)			
Digital Signal	2	RS232			
	3	Others (customized)			
	0	Carbon Steel			
Housing Material	1	Stainless Steel			
	0	Carbon Steel			
Flange Material	1	Stainless Steel			
	0	Without			
Companion Flange	1	With			
Power Supply	0	220V AC			
± ± *	1	24V DC			

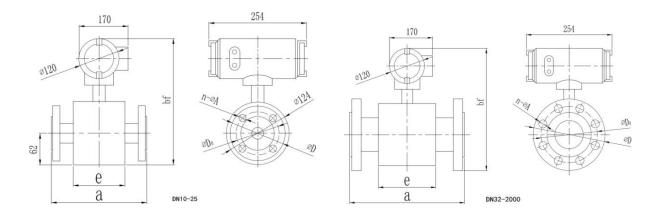
Flowmeter Model Instruction

ZORICREATO

	2	Battery supply
Instrument Range	Range (XXX) For example: (200)means 20mA co	
		maximum flux 200m ³ /h.

Version Code Example: MFE600-200-103-1.0E1-0001-0010 (max)

Explanation: MFE600 Electromagnetic flowmeter; DN200 diameter; with fixed stainless steel electrodes and Neoprene lining; with rated pressure of 1.0MPa and internal grounding electrode, temperature <60°C; IP65 protection, integrated, with 4mA~20mA DC(frequency or pulse output) and RS485 digital signal; carbon steel housing and flange, with companion mounting flange (including bolts and nuts), 220VAC power supply.


Electromagnetic Flowmeter Outline Construction

	Datad		rument Ou	tline	Flange Connection Dimension			Weight
Diameter	Rated Pressure	Dii	Dimension (mm)		(mm)			(kg)
(DN)	(MPa)							
	(IVIF a)	а	Bf	с	D	D0	n×A	
10		150	322	82	90	60	4-Φ14	7
15		150	322	82	95	65	4-Φ14	8
20		150	322	78	105	75	4-Φ14	8
25		150	312	78	115	85	4-Φ14	8
32	4.0	150	327	74	135	100	4- Φ18	9
40		150	335	74	145	110	4- Φ18	11
50		200	354	86	160	125	4- Φ18	12
65		200	366	92	180	145	8- Φ18	14
80		200	385	92	195	160	8- Φ18	15
100		250	406	114	215	180	8- Φ18	18
125	1.6	250	436	114	245	210	8- Φ 18	20
150		300	465	136	280	240	8-Ф23	24
200		350	518	156	335	295	8-Ф23	44
250		400	570	202	390	350	12-Ф23	54
300		500	620	230	440	400	12-Ф23	76
350		500	675	278	500	460	16-Ф23	79
400		600	733	320	565	515	16-Ф23	100
450	1.0	600	782	374	615	565	20-Ф25	130
500	1.0	600	835	388	670	620	20-Ф25	140
600		600	940	408	780	725	20-Ф30	205
700		700	1048	520	895	840	24-Ф30	305
800		800	1160	580	1010	950	24-Ф34	415
900		900	1260	660	1110	1050	28-Ф34	505
1000		1000	1370	720	1220	1160	28-Ф34	635
1200		1200	1585	1130	1405	1340	32-Ф34	725
1400	0.6	1400	1810	1260	1630	1560	36-Ф36	1185
1600		1600	2040	1450	1830	1760	40-Ф36	1505

Z@RICREAT@

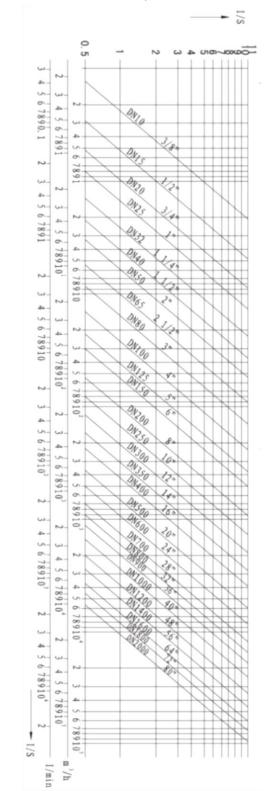
1800	1800	2250	1640	2045	1970	44-Φ39	2035
2000	2000	2460	1820	2265	2180	48-Ф42	2555

The model selection of the electromagnetic flowmeter is preferably performed by a technician who is familiar with on-site technological conditions. The technician shall select proper diameter, lining material and electrode and so on according to the measurable range table in the type selection material, and the selection preferably confirmed by an end user who is familiar with the on-site technological conditions.

Select flowmeter type

Integrated and Separated type

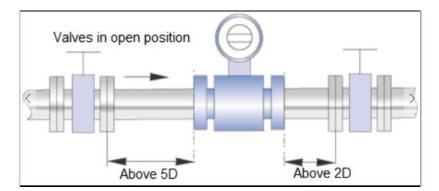
Both the integrated type and separated type have their own advantages, and basic principles for selection are as follows:

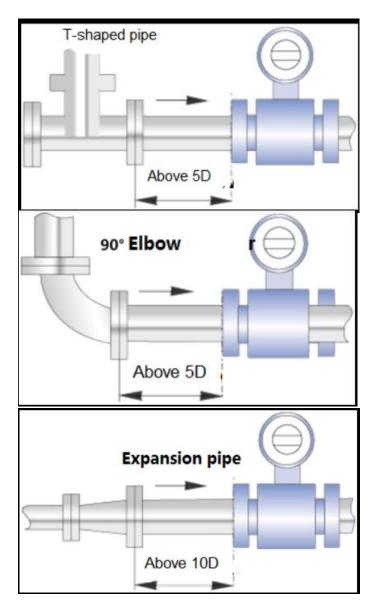

The separated type is generally used in situations inconvenient for on-site maintenance and numerical reading when commissioning is difficult or the flow meter is often immersed in water and with other functions. It is also used in poor application situations, such as high temperature fluid, a position with vibration source and explosive environment. In most cases, both the integrated and separated type can meet usage requirements.

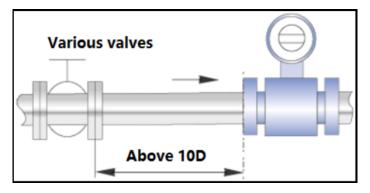
The Sensor Diameter and the Process Pipe Diameter Connected

Generally, for the sake of easy installation, please do not select reducing pipe, provided that the flux used in the flowmeter pipe shall be within the range of 0.3m/s ~ 10m/s. This kind of selection is usually applicable to a newly-designed project for which not only current working conditions are considered when choosing a velocity, but also a situation of running at full load of the device in the future shall be considered. For the relationships among the flux, velocity and diameter, see curve graph, however, sometimes we also choose a sensor with a different diameter with the connected pipelinediameter, for example:

1. The velocity in the pipeline is low and the process flux is stable. In order to meet the demand of the instrument for flux range and improve local velocity of the flowmeter, select a sensor with smaller diameter than the technological pipeline and additionally connect a reducing pipe at front and rear part of the sensor.


2. In terms of large diameter electromagnetic flowmeter, the larger the diameter is, the higher the price will be. As for the situations with low velocity in the pipeline and stable technological parameter, small diameter flowmeter can be chosen. This not only runs the flowmeter under good working state, but also reduces investment cost.




FlowmeterDiameter,Velocity and Flow Relation Graph

Straight Pipeline Length

In order to ensure upstream pipe condition required for achieveing high measurement accuracy of electromagnetic flowmeter, pipeline conditions as shown in following are recommended according to standards above and measured data of pipeline condition.

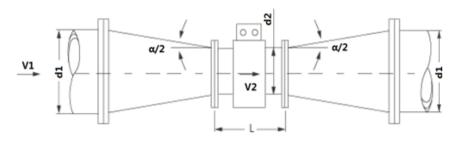
Minimum Length of Required Straight Pipe

Notes for Installing a Reducing Pipe additionally

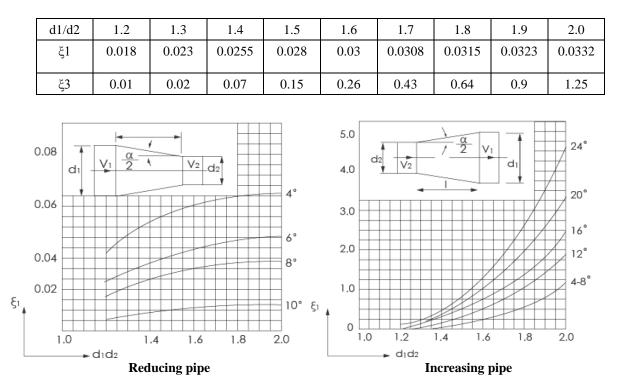
For not mapping distribution of flux field after installing the reducing pipe and not influencing precision of the electromagnetic flowmeter, the reducing pipe can be regarded as a part of the straight pipe segment. The central core angle α of the reducing pipe shall be no more than 150 degree, and the smaller, the better.

The installation of a reducing pipe will cause pressure loss

The total pressure loss consists of three parts:

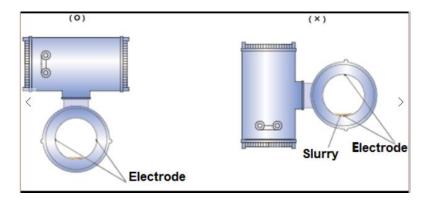

- 1. Pressure loss in reducing pipe $\Delta P1 = \rho / 2\xi 1V22$
- 2. Pressure loss in increasing pipe $\Delta P3 = \rho / 2\xi 3V22$
- 3. Pressure loss in sensor measuring pipe $\Delta P2 = \rho / 2\xi 3V22$

The total pressure loss: $\Delta P = 0.01 (\Delta P1 + \Delta P2 + \Delta P3)$ (mbar)


NOTE: ρ is the medium density, the unit is kg / m 3

- ξ1, ξ3 are respectively coefficient related with the Reynolds number of reducing pipe and increasing pipe;
- $\xi 2 = 0.02$ is coefficient of sensor measuring pipe;

V1, V2 are respectively velocities in the technological pipeline and sensor measuring pipe, in unit of m/s;



E.a E' valve when a=8°

Installation Direction

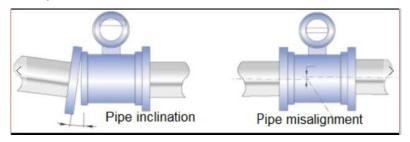
When installing the electromagnetic flowmeter, in general, the axis of the electrodes shall be approximately level in horizontal installation. If the axis of the electrodes is perpendicular to the ground, bubbles will be easily collected near the electrodes located on the upper side, while the electrode located at lower side and stopping the liquid contacting with the same is covered by slurry. The converter shall be installed above the pipeline to prevent water from entering the converter.

Electromagnetic flowmeter must work in full pipe conditions, that is to say, the flowmeter cannot work normally in partially filled pipe or empty pipe conditions.

The positive direction in which fluid flows is generally in the same direction as the arrows in the sensors. There must be enough installation and maintenance space close to the flowmeter to prevent the flowmeter from being vibrated. During installation of the flowmeter, supports for supporting pipeline shall be provided on the two sides of the flowmeter. Stress is prevented from being affected because of pipeline vibration, impact and shrinkage. For

heavily polluted fluid, a consideration that a flowmeter is installed on the pipeline should be given.

The positive direction of the liquid flow should be consistent with the general direction of the arrow on the sensor, and there must be sufficient space for installation and maintenance to prevent the flowmeter from vibration.


FlowmeterPiping

Pipeline misalignment or inclination is a reason why the pipeline flanges bounces and breaks.

1. When flowmeter is installed, pipeline misalignment or inclination, and installation distance deviation between two flanges should be corrected first.

2.Whenflowmeter is installed, generally there are some foreign matters (e.g., welding slag and scraps) within pipeline path. Prior to installing the flowmeter, these impurities should be washed away.

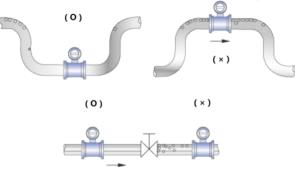
Fluid Conductivity

The electromagnetic flowmeter cannot be installed in the pipeline where the fluid conductivity is very uneven. Especially, when chemicals are injected from the upstream of the instrument, it is easily to cause unevenness of conductivity, thereby seriously interfering the measurement of flowmeter. In this case, we recommend that chemicals should be injected from the downstream of the instrument. If chemicals must be injected from the upstream of the instrument, a straight pipe segment which is long enough must be installed to ensure that fluids are mixed well.

Fluid Sealant

Please note below points during usage of fluid sealant:

Do not let it cover the surface of the electrode and the grounding ring, because this will influence the measurement of flux.


Using Cut-off valve and the Bypass valve

For easy maintenance and zero setting, cut-off valve and the bypass valve are recommended to use.

Ensure no air bubbles in flowmeter.

Pipeline design should ensure that no air bubbles come out from the fluid. Generally the flowmeter should be installed on the upstream of the valve, because the pressure in the pipeline is reduced under the action of the valve, thereby producing bubble.

MFE600 Intelligent Electromagnetic Flowmeter (V1.1)

Selection of the electrode material

The electrode material should be selected according to the corrosivity of measured medium, and selected by the users who are familiar with the on-site conditions. In general, the corrosion resistance of electrode material is higher than that of pipeline material by one grade. For ordinary media, please consult related anti-corrosion manuals. For media having complex components such as mixed acid, coupon tests should be done.

Electrode Material	Material Measured Performance (for	Corrosion Resistance
	reference only)	
316L	Domestic water, industrial water, raw wells water, urban sewage, weak corrosive acid, alkali, salt solution	
Hastelloy B(HB)	Hydrochloric acid (concentration <10%) and other non-oxidizing acid Sodium hydroxide (concentration <50%), Ammonium hydroxide alkaline solution on all concentration level; Phosphoric acid, organic acid	not applicable for Nitric acid
Hastelloy C (HC)	Mixed acid such as chromic acid and sulfuric acid solution Oxidizing salts such as: Fe ++++, Cu ++, seawater	not applicable for Hydrochloric acid
Titanium	Salts, such as: (1) chloride (oxide / magnesium / aluminum / calcium / ammonium / iron, etc.) (2) the sodium salt, potassium salt, ammonium salt and sodium hypochlorite salts, as well as potassium hydroxide, ammonium hydroxide, barium hydroxide caustic soda solutions with sea water concentration <50%	Not applicable for hydrochloric acid, sulfuric acid, phosphoric acid, hydrofluoric acid and other reducing acids
Tantalum	Hydrochloric acid (concentration <40%), dilute sulfuric acid and concentrated sulfuric acid (not	Not applicable for alkale and hydrofluoric acid

Electrode Material Properties (for reference only)

	including oleum) chlorine dioxide, ferric chloride, hypochloriteacid, sodium hudroxide, lead acetate Nitric acid (including fuming nitric acid) and other oxidizing acid, aqua regia at temperature below 80°C	
Platinum	Almost all of the acid, alkali, salt solution (including fuming sulfuric acid, fuming nitric acid)	Not applicable for aqua regia, ammonium salt
Tungsten Carbide	Pulp, sewage, solid particles with anti-interference property	Not applicable for inorganic acids, organic acids, chlorides

Ground ring materials selection

Ground ring material can be the same as the electrode material. Generally material with the same corrosion resistance as the pipeline material is optional.

Lining material selection

Lining materials should be chose according to type and temperature of measured fluid. PFA is a kind of fluorinated plastic, with good corrosion resistance to strong acid and alkali. It can withstand high temperature, with no deformation and reduction in insulation resistance at high temperature. 99.9% high-purity alumina is used for making ceramic lining fabrication so that the instrumentation can measure the flux with high precision. In comparison with traditional high polymer material, ceramics cannot create high temperature, high pressure deformation, and have good wear resistance.

Polytetrafluoroethylene (PTFE) Advantages

- High temperature resistance working temperature is up to 120° C.
- Low temperature resistance good mechanical toughness; even if the temperature drops to -20°C, it still can maintain 5% elongation.
- Corrosion resistance for many chemicals and solvents, it presents inertness and is resistant to strong acid, strong alkali, water and various organic solvent.
- Weather resistance boasting the best aging lifetime of plastics
- High lubrication boasting the lowest coefficient of friction in solid materials.
- Non-adhesion -boasting the lowest surface tension in solid materials and not adhering to any substances.
- Non-hazardous with physiological inertness and can be implanted in human bodies for a long term as blood vessel prosthesis and visceral organ, with no adverse reactions.

F46 Advantages

• F46 has the same excellent corrosion resistance like PTFE, but has higher temperature resistance than PTFE, up to

140°C. It can be used for sanitary products and jetted molding, and is easier to be processed.

Polyurethane rubber Advantage

• Code (UR), is the polymerization of polyester (or polyether) with disocyanate compound. Performance: it is a rubber with the highest abrasive resistance. Advantages includes: high strength and elasticity, good oil resistance, good ozone resistance, aging resistance, and good air tightness. Disadvantages includes: poor moisture resistance, low water resistance and alkali resistance, poor solvent resistance. It applies to places requiring high abrasive resistance, high strength and oil resistance.

Neoprene Advantage

• Good adhesion, softness and abrasion resistance, good water resistance, ageing resistance and other characteristics. In contrast, it has poor oil resistance, and is prone to ageing corrosion in environment with mixed oil and gas.

Lining Material	Performance	Application range	Measurable	Notice
			medium examples	
	1. Excellent chemical	1. Flow meter	1, Hydrochloric	1. It does not
	stability, but chlorine	long-term use	acid, sulfuric acid,	apply to chlorine
	and sodium at molten	temperature is	aqua regia.	trifluoride, liquid
	state may be corrosive	-10℃~120℃.	2, Most other acids,	fluorine at high
	to such materil.	2. It can be used	alkalis and	flow rates.
	2, Resistant to	to measure most	oxidizing agents.	2. Generally not
	hydrochloric acid,	acids, alkalis,		used for measuring
	sulfuric acid, and aqua	strong oxidizing		the electrolyte,
PTFE	regia, and the organic	agents and other		such as NaCl
(F4)	solvents does not	corrosive media,		solution flowing
	resistant to it.	but not suitable		out of the
	3. Low abrasive	for KOH, nitric		electrolytic cell.
	resistance and poor	acid, hydrofluoric		3. Not suitable for
	adhesion performance.	acid and the like.		medias with solid
	4. Excellent electrical	3. Sanitary		particles.
	insulation properties,	media.		
	but poor resistance to			
	corona.			
	1. It has same chemical	1. The Flow	1. Hydrochloric	1. It does not
	stability, electrical	meter long-term	acid, sulfuric acid,	apply to the
	insulation, lubrication,	use temperature	aqua regia.	molten alkali
FEP	non-stick feature and	is -40℃~80℃.	2. Most other acids,	metal, fuming
(F46)	incombustibility as that	2. It can be used	alkalis and	nitric acid,
	of PTFE (F4), but	to measure most	oxidizing agents.	chlorine trifluoride
	FEP material strength,	strong acids,	3. Medium	and the like.
	aging resistance, heat	alkalis, strong	containing small	2. It is generally

Main performance and application range (for reference only) of Electromagnetic flowmeter liner

MFE600 Intelligent Electromagnetic Flowmeter (V1.1)

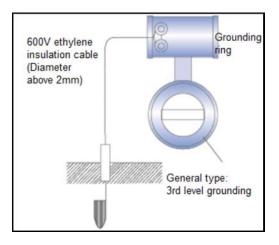
		resistance and low	oxidizing agents	amount of tiny	not used for
		temperature toughness	and other	particles .	measuring the
		is better than PTFE's .	corrosive media,		electrolyte, such as
		2. Good adhesion to	but not suitable		NaCl solution
		metal and better wear	for KOH, nitric		flowing out from
		resistance than	acid, hydrofluoric		the electrolytic
		PTFE's.	acid and the like.		cell.
		3. High tear resistance.	3. Sanitary		
			Medias.		
		1. It closes to FEP	1. The Flow	1. Hydrochloric	1. PFA is as
		(F46) in chemical	meter long-term	acid, sulfuric acid,	similar chemical
		stability, electrical	use temperature	aqua regia.	properties as
		insulation, lubrication,	is -40℃~160℃.	2. Most other acids,	PTFE.
		Non-stick performance	2. It can be used	alkalis and	2. Usually not
		and incombustibility,	to measure most	oxidizing agents.	used to measure
		but PFA material	acids, alkalis,	3. Media with a	the mud, coal
		strength, aging	strong oxidizing	small amount of	slurry, pulp.
		resistance, heat	agents and other	fine particles.	starty, purp.
		resistance and low	corrosive media,	4. Beer,	
		temperature toughness	but not suitable	saponification	
		is better than PTFE,	for KOH, nitric	liquid gas.	
	PFA	FEP.	acid, hydrofluoric	nquiù gas.	
		2. Excellent adhesion	acid and the like.		
		to metals and better	3. Sanitary		
		wear resistance than	medias.		
			meuras.		
		that of PTFE, FEP.			
		3. Low smoke, flame			
		retardant, high			
		temperature resistance,			
		two times			
		high-temperature			
		mechanical strength			
		than PTFE's.			
		1. It has excellent wear	1. General	1. Neutral wear	1. The fluid
		resistance, good oil	long-term use	strength pulp, coal	temperature ranges
		resistance.	temperature is	slurry, mud.	from $0^{\circ}C \sim 40^{\circ}C$.
retha	ne	2. It has high strength,	-10℃~60℃.	2. Domestic water,	2. Generally not
ubber	good tear resistance,	2, Good wear	industrial water,	used to measure	
	but poor acid and	resistance,	sewage, water.	medium of mixed	
		impact resistance.	suitable for liquid		organic solvent.
		3. Poor heat resistance,	containing solid		
		generally 60°C.	particles.		

		3. Cannot be used		
		to measure water		
		containing		
		organic solvent.		
	1. It has good	1. Long-term use	1. Regular water,	1. It cannot be
	flexibility and tear	temperature is	sewage.	used to measure
	resistance, certain oil	-10℃~80℃.	2. slurries, Pulp.	food.
	resistance.	2. As it contains		2. It does not
	2. Poor aging	antioxidant D, it		apply to the
	resistance, brittleness	is a little		measurement of
	temperature is at	polluting.		acid, alkali, strong
	-28°C.	3. Generally		oxidizing mediun
	3. The wear resistance	suitable for low		
Neoprene Rubber	is worse than that of	concentration of		
Kubber	polyurethane rubber.	acid, alkali, salt		
	4. It can bear the	medium and		
	corrosion of general	sewage		
	low concentration of	measurement.		
	acid, alkali, salt			
	medium, but is not			
	resistant to the			
	oxidizing medium			
	corrosion.			
	1. High strength, no	1. Suitable for	1. The slurry	1. It does not
	deformation at high	high temperature	containing hard	apply to
	temp. and pressure.	and pressure	solids, corrosive	hydrofluoric acid
Ceramics	2. It has the unique	fluid, viscous	fluids, viscous	nitric acid, aqua
	platinum - alumina	fluid, corrosive	fluids, high	regia, NaOH, 709
	cermet electrode.	fluids.	temperature high	concentration
	3. It has a good	2. Permeable	pressure fluid.	sulfuric acid.
	anti-mud noise	fluids, slurries	2. Chromium	2. It can not be
	performance, suitable	containing solid	sulfate, 25%	used for
	for permeable fluid.	particles.	sodium	measurement of
	4. Good wear		hypochlorite, nitric	copper sulfate,
	resistance, and the		acid and the like.	sodium salts and
	wear resistance is 10			other salts
	times that of			materials
	polyurethane rubber.			

Protection Level Selection

According to GB4208-84, the International Electrotechnical Commission IEC standards (IEC529-76) on enclosure protection class: IP65 (protection against water jets), that is, water projected by a nozzle (water pressure 30kPa

ZORICREATO


(0.3bar), water volume 12.5L/min, 3m distance) against enclosure from any direction shall have no harmful effects. IP67 (protection against immersion in a short time), that is, ingress of water in harmful quantity shall not be possible when the enclosure is immersed in water under defined conditions of pressure and time (at least 150cm in water, submersion of 30min.). IP68 (protection against immersion in long time), that is, submersion in the water for long time use. The maximum depth of submersion shall be agreed by manufacturer and user.

Protection Selection should be defined according to the above requirements and actual working conditions of instrument. If the meter is below ground, and often immersed in water, IP68 shall be selected; if the meter is installed on the ground, and not in humid environment, IP65 is ok.

Sensor Grounding

Since the voltage of inductive signal of electromagnetic flowmeter is small, it is easily affected by noise. Its reference potential must be the same to the measured liquid potential. Therefore, the reference potential of the sensor (terminal potential), the reference potential of converters and amplifiers are also the same to measured liquid potential, and the liquid potential have to be the same as the ground potential. The electromagnetic flowmeter is equipped with a ground loop, which is for establishing a liquid ground via contact with liquid, and for protecting lining meanwhile.

The instrument grounding is shown as below:

Noise Suppression

Do not install Electromagnetic Flowmeter near motors, transformers or power device which is easy to cause induction interference.